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Abstract: A graph G is said to have property P if for every pair of its adjacent
vertices x and y there exists a vertex z such that z is not adjacent to x and y. In this
paper, we establish an explicit formula to calculate the several graph indices for
the complement of any graph G having above property. As a corollary we obtain
the several graph indices for the complement of certain derived graphs.
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1. Introduction and Preliminaries

For vertices u,v € V(G), the distance between u and v in G, denoted by
da(u,v), is the length of a shortest (u,v)-path in G and let dg(v) be the degree of
a vertex v € V(G). The diameter of the graph G is max{dg(u,v)lu,v € V(G)}.
A topological index of a graph is a real number related to the graph; it does not
depend on labeling or pictorial representation of a graph. There exist several types
of such indices, especially those based on vertex and edge distances. One of the
most intensively studied topological indices is the Wiener index.
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Dobrynin and Kochetova [2] and Gutman [3] independently proposed a vertex-
degree-weighted version of Wiener index called degree distance, which is defined for

a connected graph G as DD(G) =L Y (dg(u)+dg(v))dg(u,v). The additively

2
u,veV(G)

weighted Harary index(H ) or reciprocal degree distance(RDD) is defined in [1] as
_ (dg(u)+dg (v))
RDD(G)=1 > Gdc(uﬂf’; :

u,veV(G)
The generalized degree distance, denoted by H)(G), is defined as H)(G) =
3 Z( )(dG(u) + dg(v))d}(u,v), where X is a any real number. If A\ = 1, then
u,veV (G

H)\(G) = DD(G) and if A = —1, then H)(G) = RDD(G). The generalized degree

distance of unicyclic and bicyclic graphs are studied by Hamzeh et. al [4, 5]. Also

they are given the generalized degree distance of Cartesian product, join, symmetric

difference, composition and disjunction of two graphs. The first Zagreb index is

defined for a connected graph G as Mi(G) = > dg(u)? = Y. (dg(u) +

ueV(Q) weE(Q)
di(v)). The Zagreb indices are found to have applications in QSPR and QSAR
studies as well.

2. Main results

Let G be (n,m)-graph (that is, G has n vertices and m edges). The complement
of G, denoted by G, is a simple graph on the same set of vertices of G in which
two vertices u and v are adjacent in G if and only if they are nonadjacent in G.
Obviously, E(G) U E(G) = E(K,) and m = |E(G)| = @ — m. The degree of
a vertex v in G is denoted by dg(v); the degree of the same vertex in G is given
by dz(v) =n —1—dg(v). A graph G is said to have property P if for every pair
of its adjacent vertices = and y there exists a vertex z such that z is not adjacent
to x and y. If G has property P, then G is connected and diameter of G is 2. In
this section, we obtain the results for generalized version of degree distance and
product degree distance for complement of a given graph with property P.

Lemma 2.1. Let G be a (n,m) graph. Then M,(G) = 2m(n — 1) — My(G) and
My(G) = 2m2 — My(G) — 21LD

2

Theorem 2.2. Let G be a (n,m) graph with property P. Then
H\(G) = (n — 1)(2*'m +n(n — 1) — 4m) — M, (G)(2* + 1).
Proof. From the definition of H,, we have

= = Z (dg(u) + dg(v)dx(u,v).

quVG

One can see that for a vertex v in G, dg(v) = n — 1 — dg(v). Further for any
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vertices w and v in G, the distance between these vertices are 2 when u and v are
adjacent in G and 1 when u and v are non-adjacent in GG. Hence

(@) = 3 ((n=1)=daw)+ (n-1) = da(v))2

weFE(G)
+ Z ((n —1)—dg(u)+(n—1) — dG(”))
wé¢FE(G)
= 2 Y (200 1) - (dau) + dg(0)))
weE(G)

+ ) (2(n —1) — (dg(u) + da(U)))
wéE(G)
n(n

= 2*2(n — 1)m — My(G)] +2(n — 1)(7_1> —m) — M(G)

= 2 (n—1)m —2*My(G) + n(n —1)* = 2(n — 1)m — M,(G)
= (n—=D[2"'m +n(n—1) —2m] — 2°M,(G) — M,(G)
= (n—=1D)2"'m+n(n—1) —4m) — M (G)(2* + 1).

By setting A = 1 and —1, in above theorem, we have the following corollary.

Corollary 2.3. Let G be a (n,m) graph with property P. Then DD(G) = n(n —
1) = 3Mi(G) and RDD(G) = (n — 1)[n(n — 1) — 3m] — 3M,(G).

3. Line Graph

The Line graph of G denoted by L(G) is the graph whose vertices correspond to
the edges of G with two vertices in L being adjacent if and only if the corresponding
edges in G are incident. Observe that |V(L(G))| = |E(G)| and |E(L(G))| =
My (G) — |E(G)]. See that M (L(G)) = F(G) — 4M(G) + 2M5(G) + 4m.

Corollary 3.1. Let L(G) be the line graph of G and if G # K, for n > 3. Then

Hy(L(G)) = m(m—1)(2(2*=2)+(m—1))— (2*+1)(F(G)—4 M, (G)+2M3(G)+4m).
Proof. To get a values of H*(L(G)) we replacing n by m and m by 5 M;(G)+|E(G)|
in Theorem 2.2.

By setting A = 1 and —1 in Corollary 3.1, we obtain the following.

Corollary 3.2. Let L(G) be the line graph of G and if G # K1, for n > 3. Then
() DD(L(G)) = m<(m 1) - 12) - 3(F(G) — AM,(G) + 2Ms(G) + 4m>.

() RDD(L(G)) = m(m? = 2m +5) +3 | B(G)| (m~1) — § (M (G)(m—5) + F(G) -
2M2(G)).
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4. The Graph G*

Let G* be the graph obtained from G by attaching a pendent vertex to each
vertex of G. One can easily compute that M;(G") = M;(G) + 4m + 2n and

Corollary 4.1. Let G be a (n,m) graph. Then Hy\(GT) = (2n—1) (2/\+1(m+n) +
on(2n — 1) — 4(m + n)> - <M1(G) +dm + 2n> (2*+1).

Proof. To get a values of H*(G*) and H;(GT) we replacing n by 2n and m by
m + n in Theorem 2.2.

By setting A = 1 and —1 in Corollary 4.1, we obtain the following.

Corollary 4.2. Let G be a (n,m) graph. Then
(i)DD(G) = 2n((2n — 1)? — 3) — 3(M,(G) + 4m).
(i)RDD(GT) = (2n — 1) <2n(2n — 1) = 3(m + n)) - g(Ml(G) +dm + zn).

5. Subdivision graph

Subdivision graph of G is the graph S(G) obtained from G by inserting a new
vertex into each edge of G. Note that |V (S(G))| = |[V(G)|+|E(G)| and |[E(S(G))| =
2|E(G)|. Further, M,(S(G)) = M1(G) +4m and My(S(GQ)) = 2M,(G).

Corollary 5.1. Let S(G) be the subdivision graph of G such that G # P,, n < 2.
Then Hy\(S(G)) = (n+m—1)(4m(2*=2)+(n+m)(n+m—1))+(2*+1)(M; (G)+4m).
Proof. To get a values of H*(S(G)) we replacing n by n +m and m by 2m in

Theorem 2.2.
By setting A = 1 and —1 in Corollary 5.1, we obtain the following.

Corollary 5.2. Let S(G) be the subdivision graph of G such that G # P,, n < 2.
Then

(i)DD(S(G)) = (n+m)(n+m —1)> = 3(M;(G) + 4m).

(it)RDD(S(G)) = (n+m)((n +m — 1) — 6m) — 10m — %Ml(G).
6. Vertex-semi total graph

Vertex-semi total graph of G is the graph T37(G) obtained from G by adding
a new vertex corresponding to each edge of G and by joining each new vertex to
the end vertices of the edge corresponding to it. One can see that |V (T1(G))| =
[V(G)|+|E(GQ)| and |E(T1(G))| = 3|E(G)|. Moreover, M1(T1(G)) = 4M1(G)+4m

Corollary 6.1. Let Ty be the vertez-semi total graph of G and if G # P, for
n <3, G# K, foraln and G # Ky, forn > 3. Then H\(T1(G)) = (n +m —
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1) (6m(2’\ —2) + (n+m)(n+m— 1)) — AMy(G) + 4m(2* + 1),

Proof. To get a values of H*(Ty(G)) we replacing n by n +m and m by 2m in
Theorem 2.2.
By setting A = 1 and —1 in Corollary 6.1, we obtain the following.

Corollary 6.2. Let Ty be the vertex-semi total graph of G and if G # P, forn < 3,
G # K, for alln and G # K, ,, forn > 3. Then

(1)DD(T1(GQ)) = (n+m)(n+m — 1)* = 12(M;(G) + m).
(it)RDD(T1(G)) = (n+m)((n+m — 1) — 9m) — 6M;1(G) + 3m.

7. Edge-semi total graph

Edge-semi total graph of G is the graph T5(G) obtained from G by inserting
a new vertex into each edge of G and by joining edges to those pairs of these
new vertices which lie on adjacent edges of G. One can observe that |V (T3(G))| =
V(G)| + |E(G)| and |E(T>(G))| = |E(G)|| + $M1(G). Note that M, (T»(G)) =
Mi(G) + Mi(L(G)) + 8|E(L(G))| + 4m and Ms(T(G)) = 4Ms(G) + 2HZ(G) +
Ms(L(G)) + 2M1(L(G)) 4+ 2M;(G) — 4m.
Corollary 7.1. Let T5 be the edge-semi total graph of G and if G # P, for n < 3,

G # K, for alln and G # Ky,n forn > 3. Then H\(T2(G)) = (n+m — 1)((2m+
My(G)(2* = 2)+ (n+m)(n+m—1)) = (2 +1) (M(G) + My (L(G)) + 8| E(G)| +
4M1(G)+4m).

Proof. To get a values of H*(Ty(G)) we replacing n by n + m and m by (m +
$M,(G)) in Theorem 2.2.
By setting A = 1 and —1 in Corollary 7.1, we obtain the following.

Corollary 7.2. Let Ty be the edge-semi total graph of G and if G # P, forn < 3,
G # K, for alln and G # Ky,n forn > 3. Then

(i) DD(Ty(G)) = (n+m)(n+m—1)2=3(M(G) + M, (L(G))+8 |E(G)|+4M(G)+
4m).

(1)) RDD(T5(G)) = (n+m —1)((n + m)(n+m — 1) — 3m) — My (G)(3(n +m) +
9) — $M(L(G)) - 121E].

8. Total graph

Total graph of G is the graph T'(G) whose vertex set is V(G) U E(G), with two
vertices of T'(G) being adjacent if and only if the corresponding elements of G are
adjacent or incident. Note that |V(T'(G))| = |V(G)| + |E(G)| and |E(T(G))| =
2|E(G)|+1M:(G). Moreover, My (T(G)) = 4My(G)+ M, (L(G))+8 |E(L(G))|+4m
and My (T2(G)) = HZ(G) + My(L(G)) 4+ 2M1(L(G)) 4+ 2M1(G) — 4m.
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Corollary 8.1. Let T be the total graph of G and if G # P, forn <3, G # K,

for allm and G # Ky,n forn > 3. Then Hy(T(G)) = (n+m — 1)((2A+1 —4)(2m+
LML(G))) = 8My(G) + Mi(L(G)) + 8| E(G)] + dim.

Proof. To get a values of H*(T'(G)) we replacing n by n+m and m by 2m~+3M,;(G)
in Theorem 2.2.
By setting A = 1 and —1 in Corollary 8.1, we obtain the following.

Corollary 8.2. Let T be the total graph of G and if G # P, forn < 3, G # K,
for alln and G # Ky,n forn > 3. Then

(i)DD(T(G)) = (n+m)(n+m—1)2 —24(M,(G) + |E(G)|) — 3(M1(L(G)) + 4m).
(i) RDD(T(G)) = (n+m)(n +m = 1)2 = My(G) (3 (n+m) + %) = 3My(L(G))
6m(n+m —2) — 12|E(G)].

3. Conclusion:
Distance in graphs play an important role in chemistry. In this article, we have
presented the results for distance based indices of complement of given graphs.
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