South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (A) (2020), pp. 131-136

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

SEVERAL DISTANCE BASED INDICES FOR COMPLEMENT OF GRAPHS

S. Parameswari and K. Balasangu*

Department of Mathematics, Arignar Anna Govt Arts college, Villupuram - 605752, Tamil Nadu, INDIA

E-mail: eswarip651@gmail.com

*Department of Mathematics, Thiru kolanjiappar Govt Arts college, Viruthachalam - 606001, Tamil Nadu, INDIA

(Received: Mar. 15, 2020 Accepted: April. 20, 2020 Published: Apr. 30, 2020)

Abstract: A graph G is said to have property P if for every pair of its adjacent vertices x and y there exists a vertex z such that z is not adjacent to x and y. In this paper, we establish an explicit formula to calculate the several graph indices for the complement of any graph G having above property. As a corollary we obtain the several graph indices for the complement of certain derived graphs.

Keywords and Phrases: Topological index, distance, derived graph.

 $\textbf{2010 Mathematics Subject Classification:} \ 05C12, \ 05C76.$

1. Introduction and Preliminaries

For vertices $u, v \in V(G)$, the distance between u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path in G and let $d_G(v)$ be the degree of a vertex $v \in V(G)$. The diameter of the graph G is $max\{d_G(u, v)|u, v \in V(G)\}$. A topological index of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index.

Dobrynin and Kochetova [2] and Gutman [3] independently proposed a vertex-degree-weighted version of Wiener index called degree distance, which is defined for a connected graph G as $DD(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v)) d_G(u,v)$. The additively

weighted Harary index(H_A) or reciprocal degree distance(RDD) is defined in [1] as $RDD(G) = \frac{1}{2} \sum_{u,v \in V(G)} \frac{(d_G(u) + d_G(v))}{d_G(u,v)}$.

The generalized degree distance, denoted by $H_{\lambda}(G)$, is defined as $H_{\lambda}(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v)) d_G^{\lambda}(u,v)$, where λ is a any real number. If $\lambda = 1$, then

 $H_{\lambda}(G) = DD(G)$ and if $\lambda = -1$, then $H_{\lambda}(G) = RDD(G)$. The generalized degree distance of unicyclic and bicyclic graphs are studied by Hamzeh et. al [4, 5]. Also they are given the generalized degree distance of Cartesian product, join, symmetric difference, composition and disjunction of two graphs. The first Zagreb index is defined for a connected graph G as $M_1(G) = \sum_{u \in V(G)} d_G(u)^2 = \sum_{uv \in E(G)} (d_G(u) + u)^2$

 $d_G(v)$). The Zagreb indices are found to have applications in QSPR and QSAR studies as well.

2. Main results

Let G be (n, m)-graph (that is, G has n vertices and m edges). The complement of G, denoted by \overline{G} , is a simple graph on the same set of vertices of G in which two vertices u and v are adjacent in \overline{G} if and only if they are nonadjacent in G. Obviously, $E(G) \cup E(\overline{G}) = E(K_n)$ and $\overline{m} = |E(\overline{G})| = \frac{n(n-1)}{2} - m$. The degree of a vertex v in G is denoted by $d_G(v)$; the degree of the same vertex in \overline{G} is given by $d_{\overline{G}}(v) = n - 1 - d_G(v)$. A graph G is said to have property P if for every pair of its adjacent vertices x and y there exists a vertex z such that z is not adjacent to x and y. If G has property P, then \overline{G} is connected and diameter of \overline{G} is z. In this section, we obtain the results for generalized version of degree distance and product degree distance for complement of a given graph with property P.

Lemma 2.1. Let G be a (n,m) graph. Then $\overline{M}_1(G) = 2m(n-1) - M_1(G)$ and $\overline{M}_2(G) = 2m^2 - M_2(G) - \frac{M_1(G)}{2}$.

Theorem 2.2. Let G be a (n,m) graph with property P. Then $H_{\lambda}(\overline{G}) = (n-1)(2^{\lambda+1}m + n(n-1) - 4m) - M_1(G)(2^{\lambda} + 1)$.

Proof. From the definition of H_{λ} , we have

$$H_{\lambda}(\overline{G}) = \frac{1}{2} \sum_{u,v \in V\overline{G}} (d_{\overline{G}}(u) + d_{\overline{G}}(v)) d_{\overline{G}}^{\lambda}(u,v).$$

One can see that for a vertex v in G, $d_{\overline{G}}(v) = n - 1 - d_G(v)$. Further for any

vertices u and v in \overline{G} , the distance between these vertices are 2 when u and v are adjacent in G and 1 when u and v are non-adjacent in G. Hence

$$\begin{split} H_{\lambda}(\overline{G}) &= \sum_{uv \in E(G)} \Big((n-1) - d_G(u) + (n-1) - d_G(v) \Big) 2^{\lambda} \\ &+ \sum_{uv \notin E(G)} \Big((n-1) - d_G(u) + (n-1) - d_G(v) \Big) \\ &= 2^{\lambda} \sum_{uv \in E(G)} \Big(2(n-1) - (d_G(u) + d_G(v)) \Big) \\ &+ \sum_{uv \notin E(G)} \Big(2(n-1) - (d_G(u) + d_G(v)) \Big) \\ &= 2^{\lambda} [2(n-1)m - M_1(G)] + 2(n-1) (\frac{n(n-1)}{2} - m) - \overline{M_1}(G) \\ &= 2^{\lambda+1} (n-1)m - 2^{\lambda} M_1(G) + n(n-1)^2 - 2(n-1)m - \overline{M_1}(G) \\ &= (n-1) [2^{\lambda+1}m + n(n-1) - 2m] - 2^{\lambda} M_1(G) - \overline{M_1}(G) \\ &= (n-1)(2^{\lambda+1}m + n(n-1) - 4m) - M_1(G)(2^{\lambda} + 1). \end{split}$$

By setting $\lambda = 1$ and -1, in above theorem, we have the following corollary.

Corollary 2.3. Let G be a (n,m) graph with property P. Then $DD(\overline{G}) = n(n-1)^2 - 3M_1(G)$ and $RDD(\overline{G}) = (n-1)[n(n-1) - 3m] - \frac{3}{2}M_1(G)$.

3. Line Graph

The Line graph of G denoted by L(G) is the graph whose vertices correspond to the edges of G with two vertices in L being adjacent if and only if the corresponding edges in G are incident. Observe that |V(L(G))| = |E(G)| and $|E(L(G))| = \frac{1}{2}M_1(G) - |E(G)|$. See that $M_1(L(G)) = F(G) - 4M_1(G) + 2M_2(G) + 4m$.

Corollary 3.1. Let L(G) be the line graph of G and if $G \neq K_{1,n}$ for $n \geq 3$. Then $H_{\lambda}(\overline{L(G)}) = m(m-1)(2(2^{\lambda}-2)+(m-1))-(2^{\lambda}+1)(F(G)-4M_1(G)+2M_2(G)+4m)$. **Proof.** To get a values of $H^{\lambda}(\overline{L(G)})$ we replacing n by m and m by $\frac{1}{2}M_1(G)+|E(G)|$ in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 3.1, we obtain the following.

Corollary 3.2. Let L(G) be the line graph of G and if $G \neq K_{1,n}$ for $n \geq 3$. Then $(i)DD(\overline{L(G)}) = m\Big((m-1)-12\Big) - 3\Big(F(G)-4M_1(G)+2M_2(G)+4m\Big)$. $(ii)RDD(\overline{L(G)}) = m(m^2-2m+5)+3|E(G)|(m-1)-\frac{3}{2}\Big(M_1(G)(m-5)+F(G)-2M_2(G)\Big)$.

4. The Graph G^+

Let G^+ be the graph obtained from G by attaching a pendent vertex to each vertex of G. One can easily compute that $M_1(G^+) = M_1(G) + 4m + 2n$ and $M_2(G^+) = M_1(G) + M_2(G) + 3m + n$.

Corollary 4.1. Let G be a
$$(n,m)$$
 graph. Then $H_{\lambda}(\overline{G^+}) = (2n-1) \Big(2^{\lambda+1}(m+n) + 2n(2n-1) - 4(m+n) \Big) - \Big(M_1(G) + 4m + 2n \Big) (2^{\lambda} + 1).$

Proof. To get a values of $H^{\lambda}(\overline{G^+})$ and $H^*_{\lambda}(\overline{G^+})$ we replacing n by 2n and m by m+n in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 4.1, we obtain the following.

Corollary 4.2. Let G be a (n, m) graph. Then

$$(i)DD(\overline{G^+}) = 2n((2n-1)^2 - 3) - 3(M_1(G) + 4m).$$

$$(ii)RDD(\overline{G^+}) = (2n-1)\Big(2n(2n-1)-3(m+n)\Big) - \frac{3}{2}\Big(M_1(G)+4m+2n\Big).$$

5. Subdivision graph

Subdivision graph of G is the graph S(G) obtained from G by inserting a new vertex into each edge of G. Note that |V(S(G))| = |V(G)| + |E(G)| and |E(S(G))| = 2|E(G)|. Further, $M_1(S(G)) = M_1(G) + 4m$ and $M_2(S(G)) = 2M_1(G)$.

Corollary 5.1. Let S(G) be the subdivision graph of G such that $G \neq P_n$, $n \leq 2$. Then $H_{\lambda}(\overline{S(G)}) = (n+m-1)(4m(2^{\lambda}-2)+(n+m)(n+m-1))+(2^{\lambda}+1)(M_1(G)+4m)$. Proof. To get a values of $H^{\lambda}(\overline{S(G)})$ we replacing n by n+m and m by 2m in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 5.1, we obtain the following.

Corollary 5.2. Let S(G) be the subdivision graph of G such that $G \neq P_n$, $n \leq 2$. Then

$$(i)DD(\overline{S(G)}) = (n+m)(n+m-1)^2 - 3(M_1(G) + 4m).$$

$$(ii)RDD(\overline{S(G)}) = (n+m)((n+m-1)^2 - 6m) - 10m - \frac{3}{2}M_1(G).$$

6. Vertex-semi total graph

Vertex-semi total graph of G is the graph $T_1(G)$ obtained from G by adding a new vertex corresponding to each edge of G and by joining each new vertex to the end vertices of the edge corresponding to it. One can see that $|V(T_1(G))| = |V(G)| + |E(G)|$ and $|E(T_1(G))| = 3|E(G)|$. Moreover, $M_1(T_1(G)) = 4M_1(G) + 4m$ and $M_2(T_1(G)) = 4M_2(G) + 4M_1(G)$.

Corollary 6.1. Let T_1 be the vertex-semi total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_{1,n}$ for $n \geq 3$. Then $H_{\lambda}(\overline{T_1(G)}) = (n + m - 1)$

$$1)\Big(6m(2^{\lambda}-2)+(n+m)(n+m-1)\Big)-4M_1(G)+4m(2^{\lambda}+1).$$

Proof. To get a values of $H^{\lambda}(\overline{T_1(G)})$ we replacing n by n+m and m by 2m in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 6.1, we obtain the following.

Corollary 6.2. Let T_1 be the vertex-semi total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_{1,n}$ for $n \geq 3$. Then

$$(i)DD(\overline{T_1(G)}) = (n+m)(n+m-1)^2 - 12(M_1(G)+m).$$

$$(ii)RDD(\overline{T_1(G)}) = (n+m)((n+m-1)^2 - 9m) - 6M_1(G) + 3m.$$

7. Edge-semi total graph

Edge-semi total graph of G is the graph $T_2(G)$ obtained from G by inserting a new vertex into each edge of G and by joining edges to those pairs of these new vertices which lie on adjacent edges of G. One can observe that $|V(T_2(G))| = |V(G)| + |E(G)|$ and $|E(T_2(G))| = |E(G)| + \frac{1}{2}M_1(G)$. Note that $M_1(T_2(G)) = M_1(G) + M_1(L(G)) + 8|E(L(G))| + 4m$ and $M_2(T(G)) = 4M_2(G) + 2HZ(G) + M_2(L(G)) + 2M_1(L(G)) + 2M_1(G) - 4m$.

Corollary 7.1. Let T_2 be the edge-semi total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_1$, n for $n \geq 3$. Then $H_{\lambda}(\overline{T_2(G)}) = (n+m-1)\Big((2m+M_1(G))(2^{\lambda}-2)+(n+m)(n+m-1)\Big)-(2^{\lambda}+1)\Big(M_1(G)+M_1(L(G))+8|E(G)|+4M_1(G)+4m\Big)$.

Proof. To get a values of $H^{\lambda}(\overline{T_2(G)})$ we replacing n by n+m and m by $(m+\frac{1}{2}M_1(G))$ in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 7.1, we obtain the following.

Corollary 7.2. Let T_2 be the edge-semi total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_1$, n for $n \geq 3$. Then

$$(i)DD(\overline{T_2(G)}) = (n+m)(n+m-1)^2 - 3(M_1(G) + M_1(L(G)) + 8|E(G)| + 4M_1(G) + 4m).$$

$$(ii)RDD(\overline{T_2(G)}) = (n+m-1)((n+m)(n+m-1)-3m) - M_1(G)(\frac{3}{2}(n+m) + 9) - \frac{3}{2}M_1(L(G)) - 12|E|.$$

8. Total graph

Total graph of G is the graph T(G) whose vertex set is $V(G) \cup E(G)$, with two vertices of T(G) being adjacent if and only if the corresponding elements of G are adjacent or incident. Note that |V(T(G))| = |V(G)| + |E(G)| and $|E(T(G))| = 2|E(G)| + \frac{1}{2}M_1(G)$. Moreover, $M_1(T(G)) = 4M_1(G) + M_1(L(G)) + 8|E(L(G))| + 4m$ and $M_2(T_2(G)) = HZ(G) + M_2(L(G)) + 2M_1(L(G)) + 2M_1(G) - 4m$.

Corollary 8.1. Let T be the total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_1$, n for $n \geq 3$. Then $H_{\lambda}(\overline{T(G)}) = (n+m-1) \Big((2^{\lambda+1}-4)(2m+\frac{1}{2}M_1(G)) \Big) - 8M_1(G) + M_1(L(G)) + 8|E(G)| + 4m$.

Proof. To get a values of $H^{\lambda}(\overline{T(G)})$ we replacing n by n+m and m by $2m+\frac{1}{2}M_1(G)$ in Theorem 2.2.

By setting $\lambda = 1$ and -1 in Corollary 8.1, we obtain the following.

Corollary 8.2. Let T be the total graph of G and if $G \neq P_n$ for $n \leq 3$, $G \neq K_n$ for all n and $G \neq K_1$, n for $n \geq 3$. Then

$$(i)DD(\overline{T(G)}) = (n+m)(n+m-1)^2 - 24(M_1(G) + |E(G)|) - 3(M_1(L(G)) + 4m).$$

$$(ii)RDD(\overline{T(G)}) = (n+m)(n+m-1)^2 - M_1(G)\left(\frac{3}{2}(n+m) + \frac{21}{3}\right) - \frac{3}{2}M_1(L(G)) - 6m(n+m-2) - 12|E(G)|.$$

3. Conclusion:

Distance in graphs play an important role in chemistry. In this article, we have presented the results for distance based indices of complement of given graphs.

References

- [1] Y. Alizadeh, A. Iranmanesh, T. Doslić, Additively weighted Harary index of some composite graphs, Discrete Math., 313 (2013), 26-34.
- [2] A. A. Dobrynin, A. A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci., 34 (1994), 1082-1086.
- [3] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci., 34 (1994), 1087-1089.
- [4] A. Hamzeh, A. Iranmanesh, S. Hossein-Zadeh, M. V. Diudea, Generalized degree distance of trees, unicyclic and bicyclic graphs, Studia Ubb Chemia, LVII, 4(2012), 73-85.
- [5] A. Hamzeh, A. Iranmanesh, S. Hossein-Zadeh, Some results on generalized degree distance, Open J. Discrete Math., 3 (2013), 143-150.