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Abstract: A graph G is said to have property P if for every pair of its adjacent
vertices x and y there exists a vertex z such that z is not adjacent to x and y. In this
paper, we establish an explicit formula to calculate the several graph indices for
the complement of any graph G having above property. As a corollary we obtain
the several graph indices for the complement of certain derived graphs.
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1. Introduction and Preliminaries
For vertices u, v ∈ V (G), the distance between u and v in G, denoted by

dG(u, v), is the length of a shortest (u, v)-path in G and let dG(v) be the degree of
a vertex v ∈ V (G). The diameter of the graph G is max{dG(u, v)|u, v ∈ V (G)}.
A topological index of a graph is a real number related to the graph; it does not
depend on labeling or pictorial representation of a graph. There exist several types
of such indices, especially those based on vertex and edge distances. One of the
most intensively studied topological indices is the Wiener index.
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Dobrynin and Kochetova [2] and Gutman [3] independently proposed a vertex-
degree-weighted version of Wiener index called degree distance, which is defined for
a connected graph G as DD(G) = 1

2

∑
u,v∈V (G)

(dG(u)+dG(v))dG(u, v). The additively

weighted Harary index(HA) or reciprocal degree distance(RDD) is defined in [1] as

RDD(G) = 1
2

∑
u,v∈V (G)

(dG(u)+dG(v))
dG(u,v)

.

The generalized degree distance, denoted by Hλ(G), is defined as Hλ(G) =
1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dλG(u, v), where λ is a any real number. If λ = 1, then

Hλ(G) = DD(G) and if λ = −1, then Hλ(G) = RDD(G). The generalized degree
distance of unicyclic and bicyclic graphs are studied by Hamzeh et. al [4, 5]. Also
they are given the generalized degree distance of Cartesian product, join, symmetric
difference, composition and disjunction of two graphs. The first Zagreb index is
defined for a connected graph G as M1(G) =

∑
u∈V (G)

dG(u)2 =
∑

uv∈E(G)

(dG(u) +

dG(v)). The Zagreb indices are found to have applications in QSPR and QSAR
studies as well.

2. Main results
Let G be (n,m)-graph (that is, G has n vertices and m edges). The complement

of G, denoted by G, is a simple graph on the same set of vertices of G in which
two vertices u and v are adjacent in G if and only if they are nonadjacent in G.
Obviously, E(G) ∪ E(G) = E(Kn) and m =

∣∣E(G)
∣∣ = n(n−1)

2
−m. The degree of

a vertex v in G is denoted by dG(v); the degree of the same vertex in G is given
by dG(v) = n − 1 − dG(v). A graph G is said to have property P if for every pair
of its adjacent vertices x and y there exists a vertex z such that z is not adjacent
to x and y. If G has property P, then G is connected and diameter of G is 2. In
this section, we obtain the results for generalized version of degree distance and
product degree distance for complement of a given graph with property P.

Lemma 2.1. Let G be a (n,m) graph. Then M1(G) = 2m(n − 1) −M1(G) and

M2(G) = 2m2 −M2(G)− M1(G)
2

.

Theorem 2.2. Let G be a (n,m) graph with property P. Then
Hλ(G) = (n− 1)(2λ+1m+ n(n− 1)− 4m)−M1(G)(2λ + 1).
Proof. From the definition of Hλ, we have

Hλ(G) =
1

2

∑
u,v∈V G

(dG(u) + dG(v))dλ
G

(u, v).

One can see that for a vertex v in G, dG(v) = n − 1 − dG(v). Further for any
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vertices u and v in G, the distance between these vertices are 2 when u and v are
adjacent in G and 1 when u and v are non-adjacent in G. Hence

Hλ(G) =
∑

uv∈E(G)

(
(n− 1)− dG(u) + (n− 1)− dG(v)

)
2λ

+
∑

uv/∈E(G)

(
(n− 1)− dG(u) + (n− 1)− dG(v)

)
= 2λ

∑
uv∈E(G)

(
2(n− 1)− (dG(u) + dG(v))

)
+

∑
uv/∈E(G)

(
2(n− 1)− (dG(u) + dG(v))

)
= 2λ[2(n− 1)m−M1(G)] + 2(n− 1)(

n(n− 1)

2
−m)−M1(G)

= 2λ+1(n− 1)m− 2λM1(G) + n(n− 1)2 − 2(n− 1)m−M1(G)

= (n− 1)[2λ+1m+ n(n− 1)− 2m]− 2λM1(G)−M1(G)

= (n− 1)(2λ+1m+ n(n− 1)− 4m)−M1(G)(2λ + 1).

By setting λ = 1 and −1, in above theorem, we have the following corollary.

Corollary 2.3. Let G be a (n,m) graph with property P. Then DD(G) = n(n −
1)2 − 3M1(G) and RDD(G) = (n− 1)[n(n− 1)− 3m]− 3

2
M1(G).

3. Line Graph
The Line graph of G denoted by L(G) is the graph whose vertices correspond to

the edges of G with two vertices in L being adjacent if and only if the corresponding
edges in G are incident. Observe that |V (L(G))| = |E(G)| and |E(L(G))| =
1
2
M1(G)− |E(G)| . See that M1(L(G)) = F (G)− 4M1(G) + 2M2(G) + 4m.

Corollary 3.1. Let L(G) be the line graph of G and if G 6= K1,n for n ≥ 3. Then

Hλ(L(G)) = m(m−1)(2(2λ−2)+(m−1))−(2λ+1)(F (G)−4M1(G)+2M2(G)+4m).
Proof. To get a values ofHλ(L(G)) we replacing n bym andm by 1

2
M1(G)+|E(G)|

in Theorem 2.2.
By setting λ = 1 and −1 in Corollary 3.1, we obtain the following.

Corollary 3.2. Let L(G) be the line graph of G and if G 6= K1,n for n ≥ 3. Then

(i)DD(L(G)) = m
(

(m− 1)− 12
)
− 3
(
F (G)− 4M1(G) + 2M2(G) + 4m

)
.

(ii)RDD(L(G)) = m(m2−2m+5)+3 |E(G)| (m−1)− 3
2

(
M1(G)(m−5)+F (G)−

2M2(G)
)
.
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4. The Graph G+

Let G+ be the graph obtained from G by attaching a pendent vertex to each
vertex of G. One can easily compute that M1(G

+) = M1(G) + 4m + 2n and
M2(G

+) = M1(G) +M2(G) + 3m+ n.

Corollary 4.1. Let G be a (n,m) graph. Then Hλ(G+) = (2n−1)
(

2λ+1(m+n) +

2n(2n− 1)− 4(m+ n)
)
−
(
M1(G) + 4m+ 2n

)
(2λ + 1).

Proof. To get a values of Hλ(G+) and H∗λ(G+) we replacing n by 2n and m by
m+ n in Theorem 2.2.

By setting λ = 1 and −1 in Corollary 4.1, we obtain the following.

Corollary 4.2. Let G be a (n,m) graph. Then
(i)DD(G+) = 2n((2n− 1)2 − 3)− 3(M1(G) + 4m).

(ii)RDD(G+) = (2n− 1)
(

2n(2n− 1)− 3(m+ n)
)
− 3

2

(
M1(G) + 4m+ 2n

)
.

5. Subdivision graph

Subdivision graph of G is the graph S(G) obtained from G by inserting a new
vertex into each edge ofG. Note that |V (S(G))| = |V (G)|+|E(G)| and |E(S(G))| =
2 |E(G)| . Further, M1(S(G)) = M1(G) + 4m and M2(S(G)) = 2M1(G).

Corollary 5.1. Let S(G) be the subdivision graph of G such that G 6= Pn, n ≤ 2.
Then Hλ(S(G)) = (n+m−1)(4m(2λ−2)+(n+m)(n+m−1))+(2λ+1)(M1(G)+4m).
Proof. To get a values of Hλ(S(G)) we replacing n by n + m and m by 2m in
Theorem 2.2.

By setting λ = 1 and −1 in Corollary 5.1, we obtain the following.

Corollary 5.2. Let S(G) be the subdivision graph of G such that G 6= Pn, n ≤ 2.
Then
(i)DD(S(G)) = (n+m)(n+m− 1)2 − 3(M1(G) + 4m).
(ii)RDD(S(G)) = (n+m)((n+m− 1)2 − 6m)− 10m− 3

2
M1(G).

6. Vertex-semi total graph

Vertex-semi total graph of G is the graph T1(G) obtained from G by adding
a new vertex corresponding to each edge of G and by joining each new vertex to
the end vertices of the edge corresponding to it. One can see that |V (T1(G))| =
|V (G)|+ |E(G)| and |E(T1(G))| = 3 |E(G)| . Moreover, M1(T1(G)) = 4M1(G)+4m
and M2(T1(G)) = 4M2(G) + 4M1(G).

Corollary 6.1. Let T1 be the vertex-semi total graph of G and if G 6= Pn for
n ≤ 3, G 6= Kn for all n and G 6= K1,n for n ≥ 3. Then Hλ(T1(G)) = (n + m −
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1)
(

6m(2λ − 2) + (n+m)(n+m− 1)
)
− 4M1(G) + 4m(2λ + 1).

Proof. To get a values of Hλ(T1(G)) we replacing n by n + m and m by 2m in
Theorem 2.2.

By setting λ = 1 and −1 in Corollary 6.1, we obtain the following.

Corollary 6.2. Let T1 be the vertex-semi total graph of G and if G 6= Pn for n ≤ 3,
G 6= Kn for all n and G 6= K1,n for n ≥ 3. Then

(i)DD(T1(G)) = (n+m)(n+m− 1)2 − 12(M1(G) +m).
(ii)RDD(T1(G)) = (n+m)((n+m− 1)2 − 9m)− 6M1(G) + 3m.

7. Edge-semi total graph

Edge-semi total graph of G is the graph T2(G) obtained from G by inserting
a new vertex into each edge of G and by joining edges to those pairs of these
new vertices which lie on adjacent edges of G. One can observe that |V (T2(G))| =
|V (G)| + |E(G)| and |E(T2(G))| = |E(G)| | + 1

2
M1(G). Note that M1(T2(G)) =

M1(G) + M1(L(G)) + 8 |E(L(G))| + 4m and M2(T (G)) = 4M2(G) + 2HZ(G) +
M2(L(G)) + 2M1(L(G)) + 2M1(G)− 4m.

Corollary 7.1. Let T2 be the edge-semi total graph of G and if G 6= Pn for n ≤ 3,

G 6= Kn for all n and G 6= K1, n for n ≥ 3. Then Hλ(T2(G)) = (n+m− 1)
(

(2m+

M1(G))(2λ− 2) + (n+m)(n+m− 1)
)
− (2λ + 1)

(
M1(G) +M1(L(G)) + 8 |E(G)|+

4M1(G) + 4m
)
.

Proof. To get a values of Hλ(T2(G)) we replacing n by n + m and m by (m +
1
2
M1(G)) in Theorem 2.2.

By setting λ = 1 and −1 in Corollary 7.1, we obtain the following.

Corollary 7.2. Let T2 be the edge-semi total graph of G and if G 6= Pn for n ≤ 3,
G 6= Kn for all n and G 6= K1, n for n ≥ 3. Then
(i)DD(T2(G)) = (n+m)(n+m−1)2−3(M1(G)+M1(L(G))+8 |E(G)|+4M1(G)+
4m).
(ii)RDD(T2(G)) = (n + m− 1)((n + m)(n + m− 1)− 3m)−M1(G)(3

2
(n + m) +

9)− 3
2
M1(L(G))− 12 |E| .

8. Total graph

Total graph of G is the graph T (G) whose vertex set is V (G)∪E(G), with two
vertices of T (G) being adjacent if and only if the corresponding elements of G are
adjacent or incident. Note that |V (T (G))| = |V (G)| + |E(G)| and |E(T (G))| =
2 |E(G)|+ 1

2
M1(G). Moreover, M1(T (G)) = 4M1(G)+M1(L(G))+8 |E(L(G))|+4m

and M2(T2(G)) = HZ(G) +M2(L(G)) + 2M1(L(G)) + 2M1(G)− 4m.
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Corollary 8.1. Let T be the total graph of G and if G 6= Pn for n ≤ 3, G 6= Kn

for all n and G 6= K1, n for n ≥ 3. Then Hλ(T (G)) = (n+m−1)
(

(2λ+1−4)(2m+

1
2
M1(G))

)
− 8M1(G) +M1(L(G)) + 8 |E(G)|+ 4m.

Proof. To get a values ofHλ(T (G)) we replacing n by n+m andm by 2m+ 1
2
M1(G)

in Theorem 2.2.
By setting λ = 1 and −1 in Corollary 8.1, we obtain the following.

Corollary 8.2. Let T be the total graph of G and if G 6= Pn for n ≤ 3, G 6= Kn

for all n and G 6= K1, n for n ≥ 3. Then
(i)DD(T (G)) = (n+m)(n+m− 1)2− 24(M1(G) + |E(G)|)− 3(M1(L(G)) + 4m).

(ii)RDD(T (G)) = (n+m)(n+m− 1)2−M1(G)
(

3
2
(n+m) + 21

3

)
− 3

2
M1(L(G))−

6m(n+m− 2)− 12 |E(G)| .
3. Conclusion:

Distance in graphs play an important role in chemistry. In this article, we have
presented the results for distance based indices of complement of given graphs.
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